|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Object
|
+--edu.wlu.cs.levy.SNARLI.Map2D
|
+--edu.wlu.cs.levy.SNARLI.IGG
IGG implements Fritzke's Incremental Growing Grid network. Based on
@Article{Fritzke1994,
author = {B. Fritzke},
title = {Growing cell structures - a self-organizing network for
unsupervised and supervised learning},
journal = {Neural Networks},
year = {1994},
volume = {7},
number = {9},
pages = {1441-1460}
}
| Constructor Summary | |
IGG(double[][] X)
Builds IGG with random initial weights and uniform probability density function. |
|
IGG(double[][] X,
double[] P)
Builds IGG with random initial weights. |
|
IGG(double[][] X,
double[] P,
long seed)
Builds IGG with random initial weights. |
|
IGG(double[][] X,
double[] P,
java.util.Random rand)
Builds IGG with random initial weights. |
|
IGG(double[][] X,
long seed)
Builds IGG with random initial weights and uniform probability density function. |
|
IGG(double[][] X,
java.util.Random rand)
Builds IGG with random initial weights and uniform probability density function. |
|
| Method Summary | |
void |
grow(int Nmin,
double e0,
double sigma,
int lambda_g)
Runs the growth phase. |
void |
tune(double e0,
double e1,
double sigma,
int lambda_f)
Runs the fine-tuning phase. |
| Methods inherited from class edu.wlu.cs.levy.SNARLI.Map2D |
getColumnDimension, getRowDimension, getUnit, getUnits, getWeights |
| Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
public IGG(double[][] X,
double[] P,
java.util.Random rand)
throws java.lang.IllegalArgumentException
X - data to learnP - probability density function over Xrand - random-number generator
java.lang.IllegalArgumentException - if X has fewer than two dimensions
java.lang.IllegalArgumentException - if X and P have different lengths
java.lang.IllegalArgumentException - if elements of P do not sum to 1
public IGG(double[][] X,
double[] P)
throws java.lang.IllegalArgumentException
X - data to learnP - probability density function over X
java.lang.IllegalArgumentException - if x and P have different lengths
java.lang.IllegalArgumentException - if elements of P do not sum to 1
public IGG(double[][] X,
double[] P,
long seed)
throws java.lang.IllegalArgumentException
X - data to learnP - probability density function over Xseed - seed for random-number generator
java.lang.IllegalArgumentException - if X and P have different lengths
java.lang.IllegalArgumentException - if elements of P do not sum to 1public IGG(double[][] X)
X - data to learn
public IGG(double[][] X,
long seed)
X - data to learnseed - seed for random-number generator
public IGG(double[][] X,
java.util.Random rand)
X - data to learnrand - random-number generator| Method Detail |
public void grow(int Nmin,
double e0,
double sigma,
int lambda_g)
Nmin - desired network sizee0 - learning ratesigma - width parameterlambda_g - saturation parameter
public void tune(double e0,
double e1,
double sigma,
int lambda_f)
throws java.lang.IllegalArgumentException
e0 - learning ratee1 - learning ratesigma - width parameterlambda_f - saturation parameter
java.lang.IllegalArgumentException
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||